8M-bit Synchronous GRAM

Description

The μ PD481850 is a synchronous graphics memory (SGRAM) organized as 128 K words $\times 32$ bits $\times 2$ banks random access port.

This device can operate up to 100 MHz by using synchronous interface. Also, it has 8-column Block Write function to improve capability in graphics system.

This product is packaged in 100 -pin plastic QFP $(14 \times 20 \mathrm{~mm})$.

Features

- 131,072 words $\times 32$ bits $\times 2$ banks memory
- Synchronous interface (Fully synchronous DRAM with all input signals are latched at rising edge of clock)
: Pulsed interface
: Automatic precharge and controlled precharge commands
: Ping-pong operation between the two internal memory banks
: Up to 100 MHz operation frequency
- Possible to assert random column address in every cycle
- Dual internal banks controlled by A9 (Bank Address: BA)
- Byte control using DQM0 to DQM3 signals both in read and write cycle
- 8-column Block Write (BW) function
- Persistent write per bit (WPB) function
- Programmable wrap sequence (Sequential/Interleave)
- Programmable burst length (1, 2, 4, 8 and full page)
- Programmable CAS Iatency (1, 2, and 3)
- Power Down operation and Clock Suspend operation
- Auto refresh (CBR refresh) or self refresh capability
- Single $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ power supply
- LVTTL compatible inputs and outputs
- 100-pin Plastic QFP ($14 \times 20 \mathrm{~mm}$)
- 1,024 refresh cycles/16 ms
- Burst termination by Precharge command
- Burst termination by Burst stop command (in case of full-page burst)

Ordering Information

Part number	Cycle time ns (MIN.)	Clock frequency MHz (MAX.)		
μ PD481850GF-A10-J BT	10	100		
μ PD481850GF-A12-J BT	12	83	Package	100-pin Plastic QFP (14 $\times 20 \mathrm{~mm})$
:---				
μ PD481850GF-A15-J BT				

The information in this document is subject to change without notice.
i

Part Number

Synchronous GRAM

Pin Configuration (Marking Side)

100-pin Plastic QFP $(\mathbf{1 4} \times \mathbf{2 0} \mathbf{~ m m})$

Block Diagram

CONTENTS

1. Input/Output Pin Function 7
2. Commands 8
3. Simplified State Diagram 12
4. Truth Table 13
4.1 Command Truth Table 13
4.2 DQM Truth Table 13
4.3 CKE Truth Table 14
4.4 Operative Command Table 15
4.5 Command Truth Table for CKE 22
4.6 Command Truth Table for Two Banks Operation 23
5. Initialization 24
6. Programming the Mode Register 25
7. Mode Register 26
7.1 Burst Length and Sequence 27
8. Programming the Special Register 28
9. Address Bits of Bank-Select and Precharge 29
10. Precharge 30
11. Auto Precharge 31
11.1 Read with Auto Precharge 31
11.2 Write with Auto Precharge 32
11.3 Block Write with Auto Precharge 33
12. Write/Block Write with Write Per Bit 34
13. Block Write 34
14. Read/Write Command Interval 36
14.1 Read to Read Command Interval 36
14.2 Write to Write Command Interval 36
14.3 Write to Read Command Interval 37
14.4 Block Write to Write or Write/Block Write Command Interval 38
14.5 Block Write to Read Command Interval 38
14.6 Read to Write/Block Write Command Interval 39
15. Burst Termination 41
15.1 Burst Stop Command in Full Page 41
15.2 Precharge Termination 42
15.2.1 Precharge Termination in READ Cycle 42
15.2.2 Precharge Termination in WRITE Cycle 43
16. Electrical Specifications (Preliminary) 45
16.1 AC Parameters for Read/Write Cycles 50
16.2 Relationship between Frequency and Latency 52
16.3 CS Function 53
16.4 Basic Cycles 54
16.4.1 Initialization 54
16.4.2 Mode Register Set 55
16.4.3 Refresh Cycle 56
16.4.4 Cycle with Auto Precharge 58
16.4.5 Full Page Mode Cycle 64
16.4.6 Precharge Termination Cycle 70
16.4.7 Clock Suspension 73
16.4.8 Power Down Mode 79
16.4.9 Other Cycles 80
16.5 Graphics Cycles 82
16.6 Application Cycles 89
16.6.1 Page Cycles with Same Bank 89
16.6.2 Cycles with Pingpong Banks 95
16.6.3 READ and WRITE Cycles 102
16.6.4 Interleaved Cycles 105
16.6.5 Full Page Random Cycles 111
17. Package Drawing 113
18. Recommended Soldering Conditions 114

1. Input/Output Pin Function

Pin name	Input/Output	Function
CLK	Input	CLK is the master clock input. Other inputs signals are referenced to the CLK rising edge.
CKE	Input	CKE determine validity of the next CLK (clock). If CKE is high, the next CLK rising edge is valid; otherwise it is invalid. If the CLK rising edge is invalid, the internal clock is not asserted and the μ PD481850 suspends operation. When the μ PD481850 is not in burst mode and CKE is negated, the device enters power down mode. During power down mode, CKE must remain low. In Self refresh mode, low level on this pin is also used as part of the input command to specify Self refresh.
CS	Input	CS low starts the command input cycle. When CS is high, commands are ignored but operations continue.
RAS, CAS, WE	Input	RAS, CAS and WE have the same symbols on conventional DRAM but different functions. For details, refer to the command table.
DSF	Input	DSF is part of the inputs of graphics command of the μ PD481850. If DSF is inactive (Low level), μ PD481850 operates as same as SDRAM.
A0-A8	Input	Row Address is determined by A0-A8 at the CLK (clock) rising edge in the activate command cycle. Column Address is determined by A0-A7 at the CLK rising edge in the read or write command cycle. A8 defines the precharge mode. When A8 is high in the precharge command cycle, both banks are precharged; when A8 is low, only the bank selected by A9 is precharged. When A8 high in read or write command cycle, the precharge start automatically after the burst access.
A9		A9 is the bank select signal (BA). In command cycle, A9 low selects bank A and $A 9$ high selects bank B.
DQM 0 - DQM 3	Input	DQM controls I/O buffers. DQM0 corresponds to the lowest byte (DQ0 to DQ7), DQM 1 corresponds to DQ8 to DQ15, DQM2 corresponds to DQ16 to DQ23. DQM 3 corresponds to DQ24 to DQ31. In read mode, DQM controls the output buffers like a conventional OE pin. DQM high and DQM low turn the output buffers off and on, respectively. The DQM latency for the read is two clocks. In write mode, DQM controls the word mask. Input data is written to the memory cell if DQM is low but not if DQM is high. The DQM latency for the write is zero.
DQ0 - DQ31	Input/Output	DQ pins have the same function as I/O pins on a conventional DRAM. These are normally 32-bit data bus and are used for inputting and outputting data. - Function as the mask data input pins in the special register set command. Write operations can be performed after Active command with WPB (old mask data). - Functions as the column selection data input pin in the block write cycle.
Vcc Vss VccQ VssQ	(Power supply)	Vcc and Vss are power supply pins for internal circuits. VccQ and VssQ are power supply pins for the output buffers.

2. Commands

Mode register set command

$$
(C S, R A S, C A S, W E, D S F=\text { Low })
$$

The μ PD481850 has a mode register that defines how the device operates. In this command, A0 through A9 are the data input pins. After power on, the mode register set command must be executed to initialize the device.

The mode register can be set only when both banks are in idle state.
During 20 ns (trsc) following this command, the μ PD481850 cannot accept any other commands.

Bank activate command

(CS, RAS, DSF = Low, CAS, WE = High)

The μ PD481850 has two banks, each with 512 rows.
This command activates the bank selected by A9 (BA) and a row address selected by A0 through A8.

This command corresponds to a conventional DRAM's RAS falling.

Bank activate command with WPB enable

(CS, RAS = Low, CAS, WE, DSF = High)

This command is same as Bank activate command. After this command, write per bit function is available. Mask register's data is used as write mask data.

Fig. 1 Mode register set command

Fig. 2 Row address strobe and bank active command

Fig. 3 Row address strobe and bank active command with WPB enable

Precharge command

$$
(C S, \text { RAS, WE, DSF = Low, CAS = High })
$$

This command begins precharge operation of the bank selected by A9 (BA) and A8. When A8 is High, both banks are precharged, regardless of A9. When A8 is Low, only the bank selected by A9 is precharged. A9 low selects bank A and $A 9$ high selects bank B.

After this command, the μ PD481850 can't accept the activate command to the precharging bank during trp (precharge to activate command period). This command can terminate the current burstoperation ($2,4,8$, full page burst length).

This command corresponds to a conventional DRAM's RAS rising.

Write command

$$
(C S, C A S, W E, D S F=\text { Low, RAS }=\text { High })
$$

If the mode register is in the burst write mode, this command sets the burst start address given by the column address to begin the burst write operation. The first write data must be input with this write operation. The first write data in burst mode can input with this command with subsequent data on following clocks.

Read command

$$
(C S, C A S, D S F=\text { Low, RAS, WE = High })
$$

This command sets the burst start address given by the column address.

Read data is available after CAS latency requirements have been met.

Fig. 4 Precharge command

Fig. 5 Column address and write command

Fig. 6 Column address and read command

CBR (auto) refresh command

$$
(C S, R A S, C A S, D S F=\text { Low, WE, CKE = High })
$$

This command is a request to begin the CBR refresh operation. The refresh address is generated internally.

Before executing CBR refresh, both banks must be precharged.
After this cycle, both banks will be in the idle (precharged) state and ready for a bank activate command.

During trc period (from refresh command to refresh or activate command), the μ PD481850 cannot accept any other command.

Self refresh entry command

$$
(C S, R A S, C A S, D S F, C K E=\text { Low, WE = High })
$$

After the command execution, self refresh operation continues while CKE remains low. When CKE goes high, the μ PD481850 exits the self refresh mode.

During self refresh mode, refresh interval and refresh operation are performed internally, so there is no need for external control.

Before executing self refresh, both banks must be precharged.

Burst stop command in full page

(CS, WE, DSF = Low, RAS, CAS = High)

This command can stop the current full page burst ($\mathrm{BL}=256$) operation. If $B L$ is set to $2,4,8$, to execute this command is Nop.

Fig. 7 Auto refresh command

Fig. 8 Self refresh entry command

Fig. 9 Burst stop command in Full Page mode

No operation

(CS, DSF = Low, RAS, CAS, WE = High)

This command is not a execution command. No operations begin or terminate by this command.

Special register set command

$$
(C S, R A S, C A S, W E=\text { Low }, D S F=\text { High })
$$

The μ PD481850 has two special registers for graphics commands. One is color register and the other is mask register. In this command, A0 through A9 are the data input pins for the register select (color or mask register). DQ0 through DQ31 are the data input pins for the Color data or the WPB data.

During 20 ns (trsc) following this command, the μ PD481850 can not accept any other commands.

Masked block write command

(CS, CAS, WE = Low, RAS, DSF = High

This command activates 8-column block write function. This command assumes as burst length $=1$. Write data comes from color register, column address mask data is input from DQi in this command.

Fig. 10 No operation

Fig. 11 Mode register set command

Fig. 12 Mode register set command
3. Simplified State Diagram

Automatic sequence
\longrightarrow Manual input

4. Truth Table

4.1 Command Truth Table

Function	Symbol	CKE		CS	RAS	CAS	WE	DSF	Address		
		n-1	n						A9	A8	A7-A0
Device deselect	DESL	H	\times	H	\times						
No operation	NOP	H	\times	L	H	H	H	L	\times	\times	\times
Burst stop in full page	BST	H	\times	L	H	H	L	L	\times	\times	\times
Read	READ	H	\times	L	H	L	H	L	BA	L	CA
Read with auto precharge	READA	H	\times	L	H	L	H	L	BA	H	CA
Write	WRIT	H	\times	L	H	L	L	L	BA	L	CA
Write with auto precharge	WRITA	H	\times	L	H	L	L	L	BA	H	CA
Masked block write	BW	H	\times	L	H	L	L	H	BA	L	CA
Masked block write with auto precharge	BWA	H	\times	L	H	L	L	H	BA	H	CA
Bank activate	ACT	H	\times	L	L	H	H	L	BA	RA	
Bank activate with WPB enable	ACTWPB	H	\times	L	L	H	H	H	BA	RA	
Precharge select bank	PRE	H	\times	L	L	H	L	L	BA	L	\times
Precharge all banks	PALL	H	\times	L	L	H	L	L	\times	H	\times
Mode register set	MRS	H	\times	L	L	L	L	L	OP. C		
Special register set	SRS	H	\times	L	L	L	L	H	OP. C		

Remark Legend:
$H=$ High level, $L=$ Low level, $\times=$ High or Low level (Don't care), BA = Bank address (A9), RA $=$ Row address, $\mathrm{CA}=$ Column address

4.2 DQM Truth Table

Function	Symbol	CKE	
DQMi			
		$n-1$	n
Data write/output enable	ENBi	H	\times
L			
Data mask/output disable	MASKi	H	\times

Remark Legend:
$H=$ High level, $L=$ Low level, $\times=$ High or Low level (Don't care), $i=0,1,2,3$

4.3 CKE Truth Table

Current state	Function	Symbol	CKE		CS	RAS	CAS	WE	DSF	Address
			n-1	n						
Activating	Clock suspend mode entry		H	L	\times	\times	\times	\times	\times	\times
Any	Clock suspend		L	L	\times	\times	\times	\times	\times	\times
Clock suspend	Clock suspend mode exit		L	H	\times	\times	\times	\times	\times	\times
Idle	CBR refresh command	REF	H	H	L	L	L	H	L	\times
Idle	Self refresh entry	SELF	H	L	L	L	L	H	L	\times
Self refresh	Self refresh exit		L	H	L	H	H	H	\times	\times
			L	H	H	\times	\times	\times	\times	\times
Idle	Power down entry		H	L	\times	\times	\times	\times	\times	\times
Power down	Power down exit		L	H	\times	\times	\times	\times	\times	\times

Remark Legend:
$H=$ High Level, $L=$ Low level,$\times=$ High or Low level (Don't care)

Current state	CS	RAS	CAS	WE	DSF	Address	Command	Action	Notes
Idle	H	\times	\times	\times	\times	\times	DESL	Nop or Power down	2
	L	H	H	H	\times	\times	NOP	Nop or Power down	2
	L	H	H	L	H	\times	Undefined	ILLEGAL	
	L	H	H	L	L	\times	BST	ILLEGAL	3
	L	H	L	H	H	\times	Undefined	ILLEGAL	
	L	H	L	H	L	BA, CA, A8	READ/READA	ILLEGAL	3
	L	H	L	L	H	BA, CA, A8	BW/BWA	ILLEGAL	3
	L	H	L	L	L	BA, CA, A8	WRIT/WRITA	ILLEGAL	3
	L	L	H	H	H	BA, RA	ACTWPB	Bank active with WPB: Latch RA	
	L	L	H	H	L	BA, RA	ACT	Bank active: Latch RA	
	L	L	H	L	H	\times	Undefined	ILLEGAL	
	L	L	H	L	L	BA, A8	PRE/PALL	Nop	11
	L	L	L	H	H	\times	Undefined	ILLEGAL	
	L	L	L	H	L	\times	REF/SELF	CBR refresh/Self refresh	4,12
	L	L	L	L	H	Op-Code	SRS	Special register access	
	L	L	L	L	L	Op-Code	MRS	Mode register access	12
Bank active	H	\times	\times	\times	\times	\times	DESL	Nop	
	L	H	H	H	\times	\times	NOP	Nop	
	L	H	H	L	H	\times	Undefined	ILLEGAL	
	L	H	H	L	L	\times	BST	ILLEGAL	3
	L	H	L	H	H	\times	Undefined	ILLEGAL	
	L	H	L	H	L	BA, CA, A8	READ/READA	Begin read; Latch CA: Determine AP	5
	L	H	L	L	H	BA, CA, A8	BW/BWA	Begin block write: Latch CA: Determine AP	5
	L	H	L	L	L	BA, CA, A8	WRIT/WRITA	Begin write; Latch CA: Determine AP	5
	L	L	H	H	H	BA, RA	ACTWPB	ILLEGAL	3
	L	L	H	H	L	BA, RA	ACT	ILLEGAL	3
	L	L	H	L	H	\times	Undefined	ILLEGAL	
	L	L	H	L	L	BA, A8	PRE/PALL	Precharge	6
	L	L	L	H	H	\times	Undefined	ILLEGAL	
	L	L	L	H	L	\times	REF/SELF	ILLEGAL	
	L	L	L	L	H	Op-Code	SRS	Special register access	
	L	L	L	L	L	Op-Code	MRS	ILLEGAL	

Current state	CS	RAS	CAS	WE	DSF	Address	Command	Action	Notes
Read	H	\times	\times	\times	\times	\times	DESL	Continue burst to end \rightarrow Bank active	
	L	H	H	H	\times	\times	NOP	Continue burst to end \rightarrow Bank active	
	L	H	H	L	H	\times	Undefined	ILLEGAL	
	L	H	H	L	L	\times	BST	1, 2, 4, 8 burst length; Nop (Continue burst to end \rightarrow Bank active) Full page burst; Burst stop \rightarrow Bank active	
	L	H	L	H	H	\times	Undefined	ILLEGAL	
	L	H	L	H	L	BA, CA, A8	READ/READA	Term burst, new read: Determine AP	7
	L	H	L	L	H	BA, CA, A8	BW/BWA	Term burst, Start block write: Determine AP	7, 8
	L	H	L	L	L	BA, CA, A8	WRIT/WRITA	Term burst, start write: Determine AP	7, 8
	L	L	H	H	H	BA, RA	ACTWPB	ILLEGAL	3
	L	L	H	H	L	BA, RA	ACT	ILLEGAL	3
	L	L	H	L	H	\times	Undefined	ILLEGAL	
	L	L	H	L	L	BA, A8	PRE/PALL	Term burst, precharge timing for reads	
	L	L	L	H	H	\times	Undefined	ILLEGAL	
	L	L	L	H	L	\times	REF/SELF	ILLEGAL	
	L	L	L	L	H	Op-Code	SRS	ILLEGAL	
	L	L	L	L	L	Op-Code	MRS	ILLEGAL	
Write/Block write	H	\times	\times	\times	\times	\times	DESL	Continue burst to end \rightarrow Write recovering	
	L	H	H	H	\times	\times	NOP	Continue burst to end \rightarrow Write recovering	
	L	H	H	L	H	\times	Undefined	ILLEGAL	
	L	H	H	L	L	\times	BST	1, 2, 4, 8 burst length; Nop (Continue burst to end \rightarrow Bank active) Full page burst; Burst stop \rightarrow Bank active	
	L	H	L	H	H	\times	Undefined	ILLEGAL	
	L	H	L	H	L	BA, CA, A8	READ/READA	Term burst, start read: Determine AP	7, 8
	L	H	L	L	H	BA, CA, A8	BW/BWA	Term burst, new block write: Determine AP	7
	L	H	L	L	L	BA, CA, A8	WRIT/WRITA	Term burst, new write: Determine AP	7
	L	L	H	H	H	BA, RA	ACTWPB	ILLEGAL	3
	L	L	H	H	L	BA, RA	ACT	ILLEGAL	3
	L	L	H	L	H	\times	Undefined	ILLEGAL	
	L	L	H	L	L	BA, A8	PRE/PALL	Term burst, precharge timing for writes	3,9
	L	L	L	H	H	\times	Undefined	ILLEGAL	
	L	L	L	H	L	\times	REF/SELF	ILLEGAL	
	L	L	L	L	H	Op-Code	SRS	ILLEGAL	
	L	L	L	L	L	Op-Code	MRS	ILLEGAL	

Current state	CS	RAS	CAS	WE	DSF	Address	Command	Action	Notes
Read with auto precharge	H	\times	\times	\times	\times	\times	DESL	Continue burst to end \rightarrow precharging	
	L	H	H	H	\times	\times	NOP	Continue burst to end \rightarrow precharging	
	L	H	H	L	H	\times	Undefined	ILLEGAL	
	L	H	H	L	L	\times	BST	ILLEGAL	
	L	H	L	H	H	\times	Undefined	ILLEGAL	
	L	H	L	H	L	BA, CA, A8	READ/READA	ILLEGAL	
	L	H	L	L	H	BA, CA, A8	BW/BWA	ILLEGAL	
	L	H	L	L	L	BA, CA, A8	WRIT/WRITA	ILLEGAL	
	L	L	H	H	H	BA, RA	ACTWPB	ILLEGAL	3
	L	L	H	H	L	BA, RA	ACT	ILLEGAL	3
	L	L	H	L	H	\times	Undefined	ILLEGAL	
	L	L	H	L	L	BA, A8	PRE/PALL	ILLEGAL	3
	L	L	L	H	H	\times	Undefined	ILLEGAL	
	L	L	L	H	L	\times	REF/SELF	ILLEGAL	
	L	L	L	L	H	Op-Code	SRS	ILLEGAL	
	L	L	L	L	L	Op-Code	MRS	ILLEGAL	
Write/Block write with auto precharge	H	\times	\times	\times	\times	\times	DESL	Continue burst to end \rightarrow Write recovering with auto precharge	
	L	H	H	H	\times	\times	NOP	Continue burst to end \rightarrow Write recovering with auto precharge	
	L	H	H	L	H	\times	Undefined	ILLEGAL	
	L	H	H	L	L	\times	BST	ILLEGAL	
	L	H	L	H	H	\times	Undefined	ILLEGAL	
	L	H	L	H	L	BA, CA, A8	READ/READA	ILLEGAL	
	L	H	L	L	H	BA, CA, A8	BW/BWA	ILLEGAL	
	L	H	L	L	L	BA, CA, A8	WRIT/WRITA	ILLEGAL	
	L	L	H	H	H	BA, RA	ACTWPB	ILLEGAL	3
	L	L	H	H	L	BA, RA	ACT	ILLEGAL	3
	L	L	H	L	H	\times	Undefined	ILLEGAL	
	L	L	H	L	L	BA, A8	PRE/PALL	ILLEGAL	3
	L	L	L	H	H	\times	Undefined	ILLEGAL	
	L	L	L	H	L	\times	REF/SELF	ILLEGAL	
	L	L	L	L	H	Op-Code	SRS	ILLEGAL	
	L	L	L	L	L	Op-Code	MRS	ILLEGAL	

Current state	CS	RAS	CAS	WE	DSF	Address	Command	Action	Notes
Precharging	H	\times	\times	\times	\times	\times	DESL	Nop \rightarrow Enter idle after trp	
	L	H	H	H	\times	\times	NOP	Nop \rightarrow Enter idle after trp	
	L	H	H	L	H	\times	Undefined	ILLEGAL	
	L	H	H	L	L	\times	BST	ILLEGAL	3
	L	H	L	H	H	\times	Undefined	ILLEGAL	
	L	H	L	H	L	BA, CA, A8	READ/READA	ILLEGAL	3
	L	H	L	L	H	BA, CA, A8	BW/BWA	ILLEGAL	3
	L	H	L	L	L	BA, CA, A8	WRIT/WRITA	ILLEGAL	3
	L	L	H	H	H	BA, RA	ACTWPB	ILLEGAL	3
	L	L	H	H	L	BA, RA	ACT	ILLEGAL	3
	L	L	H	L	H	\times	Undefined	ILLEGAL	
	L	L	H	L	L	BA, A8	PRE/PALL	Nop \rightarrow Enter idle after trp	11
	L	L	L	H	H	\times	Undefined	ILLEGAL	
	L	L	L	H	L	\times	REF/SELF	ILLEGAL	
	L	L	L	L	H	Op-Code	SRS	Special register access	
	L	L	L	L	L	Op-Code	MRS	ILLEGAL	
Bank activating ($\mathrm{t}_{\mathrm{RCD}}$)	H	\times	\times	\times	\times	\times	DESL	Nop \rightarrow Enter bank active after trcD	
	L	H	H	H	\times	\times	NOP	Nop \rightarrow Enter bank active after trcD	
	L	H	H	L	H	\times	Undefined	ILLEGAL	
	L	H	H	L	L	\times	BST	ILLEGAL	3
	L	H	L	H	H	\times	Undefined	ILLEGAL	
	L	H	L	H	L	BA, CA, A8	READ/READA	ILLEGAL	3
	L	H	L	L	H	BA, CA, A8	BW/BWA	ILLEGAL	3
	L	H	L	L	L	BA, CA, A8	WRIT/WRITA	ILLEGAL	3
	L	L	H	H	H	BA, RA	ACTWPB	ILLEGAL	3, 10
	L	L	H	H	L	BA, RA	ACT	ILLEGAL	3, 10
	L	L	H	L	H	\times	Undefined	ILLEGAL	
	L	L	H	L	L	BA, A8	PRE/PALL	ILLEGAL	3
	L	L	L	H	H	\times	Undefined	ILLEGAL	
	L	L	L	H	L	\times	REF/SELF	ILLEGAL	
	L	L	L	L	H	Op-Code	SRS	Special register access	
	L	L	L	L	L	Op-Code	MRS	ILLEGAL	

Current state	CS	RAS	CAS	WE	DSF	Address	Command	Action	Notes
Write recovering (topL)	H	\times	\times	\times	\times	\times	DESL	Nop \rightarrow Enter bank active after topl	
	L	H	H	H	\times	\times	NOP	Nop \rightarrow Enter bank active after topL	
	L	H	H	L	H	\times	Undefined	ILLEGAL	
	L	H	H	L	L	\times	BST	ILLEGAL	3
	L	H	L	H	H	\times	Undefined	ILLEGAL	
	L	H	L	H	L	BA, CA, A8	READ/READA	Begin read; Latch CA: Determine AP	8
	L	H	L	L	H	BA, CA, A8	BW/BWA	Begin block write; Latch CA: Determine AP	
	L	H	L	L	L	BA, CA, A8	WRIT/WRITA	Begin write; Latch CA: Determine AP	
	L	L	H	H	H	BA, RA	ACTWPB	ILLEGAL	3
	L	L	H	H	L	BA, RA	ACT	ILLEGAL	3
	L	L	H	L	H	\times	Undefined	ILLEGAL	
	L	L	H	L	L	BA, A8	PRE/PALL	ILLEGAL	3
	L	L	L	H	H	\times	Undefined	ILLEGAL	
	L	L	L	H	L	\times	REF/SELF	ILLEGAL	
	L	L	L	L	H	Op-Code	SRS	Special register access	
	L	L	L	L	L	Op-Code	MRS	ILLEGAL	
Write recovering with auto precharge	H	\times	\times	\times	\times	\times	DESL	Nop \rightarrow Enter precharge after top	
	L	H	H	H	\times	\times	NOP	Nop \rightarrow Enter precharge after topL	
	L	H	H	L	H	\times	Undefined	ILLEGAL	
	L	H	H	L	L	\times	BST	ILLEGAL	
	L	H	L	H	H	\times	Undefined	ILLEGAL	
	L	H	L	H	L	BA, CA, A8	READ/READA	ILLEGAL	3, 8
	L	H	L	L	H	BA, CA, A8	BW/BWA	ILLEGAL	3
	L	H	L	L	L	BA, CA, A8	WRIT/WRITA	ILLEGAL	3
	L	L	H	H	H	BA, RA	ACTWPB	ILLEGAL	3
	L	L	H	H	L	BA, RA	ACT	ILLEGAL	3
	L	L	H	L	H	\times	Undefined	ILLEGAL	
	L	L	H	L	L	BA, A8	PRE/PALL	ILLEGAL	3
	L	L	L	H	H	\times	Undefined	ILLEGAL	
	L	L	L	H	L	\times	REF/SELF	ILLEGAL	
	L	L	L	L	H	Op-Code	SRS	Special register access	
	L	L	L	L	L	Op-Code	MRS	ILLEGAL	

Current state	CS	RAS	CAS	WE	DSF	Address	Command	Action	Notes
Refreshing	H	\times	\times	\times	\times	\times	DESL	Nop \rightarrow Enter idle after trc	
	L	H	H	H	\times	\times	NOP	Nop \rightarrow Enter idle after trc	
	L	H	H	L	H	\times	Undefined	ILLEGAL	
	L	H	H	L	L	\times	BST	ILLEGAL	
	L	H	L	H	H	\times	Undefined	ILLEGAL	
	L	H	L	H	L	BA, CA, A8	READ/READA	ILLEGAL	
	L	H	L	L	H	BA, CA, A8	BW/BWA	ILLEGAL	
	L	H	L	L	L	BA, CA, A8	WRIT/WRITA	ILLEGAL	
	L	L	H	H	H	BA, RA	ACTWPB	ILLEGAL	
	L	L	H	H	L	BA, RA	ACT	ILLEGAL	
	L	L	H	L	H	\times	Undefined	ILLEGAL	
	L	L	H	L	L	BA, A8	PRE/PALL	ILLEGAL	
	L	L	L	H	H	\times	Undefined	ILLEGAL	
	L	L	L	H	L	\times	REF/SELF	ILLEGAL	
	L	L	L	L	H	Op-Code	SRS	ILLEGAL	
	L	L	L	L	L	Op-Code	MRS	ILLEGAL	
Mode register accessing	H	\times	\times	\times	\times	\times	DESL	Nop \rightarrow Enter idle after $\mathrm{t}_{\text {RSC }}$	
	L	H	H	H	\times	\times	NOP	Nop \rightarrow Enter idle after trsc	
	L	H	H	L	H	\times	Undefined	ILLEGAL	
	L	H	H	L	L	\times	BST	ILLEGAL	
	L	H	L	H	H	\times	Undefined	ILLEGAL	
	L	H	L	H	L	BA, CA, A8	READ/READA	ILLEGAL	
	L	H	L	L	H	BA, CA, A8	BW/BWA	ILLEGAL	
	L	H	L	L	L	BA, CA, A8	WRIT/WRITA	ILLEGAL	
	L	L	H	H	H	BA, RA	ACTWPB	ILLEGAL	
	L	L	H	H	L	BA, RA	ACT	ILLEGAL	
	L	L	H	L	H	\times	Undefined	ILLEGAL	
	L	L	H	L	L	BA, A8	PRE/PALL	ILLEGAL	
	L	L	L	H	H	\times	Undefined	ILLEGAL	
	L	L	L	H	L	\times	REF/SELF	ILLEGAL	
	L	L	L	L	H	Op-Code	SRS	ILLEGAL	
	L	L	L	L	L	Op-Code	MRS	ILLEGAL	

Current state	CS	RAS	CAS	WE	DSF	Address	Command	Action	Notes
Special mode register accessing	H	\times	\times	\times	\times	\times	DESL	Nop \rightarrow Enter previous state after trsc	
	L	H	H	H	\times	\times	NOP	Nop \rightarrow Enter previous state after $\mathrm{t}_{\text {RSC }}$	
	L	H	H	L	H	\times	Undefined	ILLEGAL	
	L	H	H	L	L	\times	BST	ILLEGAL	
	L	H	L	H	H	\times	Undefined	ILLEGAL	
	L	H	L	H	L	BA, CA, A8	READ/READA	ILLEGAL	
	L	H	L	L	H	BA, CA, A8	BW/BWA	ILLEGAL	
	L	H	L	L	L	BA, CA, A8	WRIT/WRITA	ILLEGAL	
	L	L	H	H	H	BA, RA	ACTWPB	ILLEGAL	
	L	L	H	H	L	BA, RA	ACT	ILLEGAL	
	L	L	H	L	H	\times	Undefined	ILLEGAL	
	L	L	H	L	L	BA, A8	PRE/PALL	ILLEGAL	
	L	L	L	H	H	\times	Undefined	ILLEGAL	
	L	L	L	H	L	\times	REF/SELF	ILLEGAL	
	L	L	L	L	H	Op-Code	SRS	ILLEGAL	
	L	L	L	L	L	Op-Code	MRS	ILLEGAL	

Notes 1. All entries assume that CKE was active (High level) during the preceding clock cycle.
2. If both banks are idle, and CKE is inactive (Low level), μ PD481850 will enter Power down mode. All input buffers except CKE will be disabled.
3. Illegal to bank in specified states; Function may be legal in the bank indicated by BankAddress (BA), depending on the state of that bank.
4. If both banks are idle, and CKE is inactive (Low level), $\mu \mathrm{PD} 481850$ will enter Self refresh. All input buffers except CKE will be disabled.
5. Illegal if trcd is not satisfied.
6. Illegal if tras is not satisfied.
7. Must satisfy burst interrupt condition.
8. Must satisfy bus contention, bus turn around, and/or write recovery requirements.
9. Must mask preceding data which don't satisfy tbpl.
10. Illegal if trrd is not satisfied.
11. Nop to bank precharging or in idle state. May precharge bank(s) indicated by BA (and A8).
12. Illegal if any bank is not idle.

Remark Legend:
$H=$ High level, $L=$ Low level, $\times=$ High or Low level (Don't care), $V=$ Valid Data input, BA $=$ Bank address (A9), A8 = Precharge select, RA = Row address, CA = Column address, Term =Terminate, AP =Auto precharge, NOP = No operation, ILLEGAL = Device operation and/or data-integrity are not guaranteed

4.5 Command Truth Table for CKE

Current state	CKE		CS	RAS	CAS	WE	DSF	Address	Action	Notes
	$\mathrm{n}-1$	n								
Self refresh (S.R.)	H	\times	INVALID, CLK(n-1) would exit S.R.							
	H	H	H	\times	\times	\times	\times	\times	S.R. Recovery	1
	L	H	L	H	H	\times	\times	\times	S.R. Recovery	1
	L	H	L	H	L	\times	\times	\times	ILLEGAL	1
	L	H	L	L	\times	\times	\times	\times	ILLEGAL	1
	L	L	\times	\times	\times	\times	\times	\times	Maintain S.R.	
Self refresh recovery	H	H	H	\times	\times	\times	\times	\times	Idle after trc	
	H	H	L	H	H	H	\times	\times	Idle after trc	
	H	H	L	H	H	L	\times	\times	ILLEGAL	
	H	H	L	H	L	\times	\times	\times	ILLEGAL	
	H	H	L	L	\times	\times	\times	\times	ILLEGAL	
	H	L	H	\times	\times	\times	\times	\times	Begin clock suspend next cycle	
	H	L	L	H	H	H	\times	\times	Begin clock suspend next cycle	
	H	L	L	H	H	L	\times	\times	ILLEGAL	
	H	L	L	H	L	\times	\times	\times	ILLEGAL	
	H	L	L	L	\times	\times	\times	\times	ILLEGAL	
	L	H	\times	\times	\times	\times	\times	\times	Exit clock suspend next cycle	1
	L	L	\times	\times	\times	\times	\times	\times	Maintain clock suspend	
Power down (P.D.)	H	\times	\times	\times	\times	\times	\times		INVALID, CLK(n-1) would exit P.D.	
	L	H	\times	\times	\times	\times	\times	\times	EXIT P.D. \rightarrow Idle	1
	L	L	\times	\times	\times	\times	\times	\times	Maintain power down mode	
Both banks idle	H	H	H	\times	\times	\times	\times	\times	Refer to operations in Operative Command Table	
	H	H	L	H	\times	\times	\times	\times	Refer to operations in Operative Command Table	
	H	H	L	L	H	\times	\times	\times	Refer to operations in Operative Command Table	
	H	H	L	L	L	H	L	\times	Refresh	
	H	H	L	L	L	L	\times	Op-Code	Refer to operations in Operative Command Table	
	H	L	H	\times	\times	\times	\times	\times	Refer to operations in Operative Command Table	
	H	L	L	H	\times	\times	\times	\times	Refer to operations in Operative Command Table	
	H	L	L	L	H	\times	\times	\times	Refer to operations in Operative Command Table	
	H	L	L	L	L	H	L	\times	Self refresh	2
	H	L	L	L	L	L	\times	Op-Code	Refer to operations in Operative Command Table	
	L	\times	Power down	2						
Any state other than listed above	H	H	\times	\times	\times	\times	\times	\times	Refer to operations in Operative Command Table	
	H	L	\times	\times	\times	\times	\times	\times	Begin clock suspend next cycle	3
	L	H	\times	\times	\times	\times	\times	\times	Exit clock suspend next cycle	
	L	L	\times	\times	\times	\times	\times	\times	Maintain clock suspend	

Notes 1. CKE Low to High transition will re-enable CLK and other inputs asynchronously. A minimum setup time must be satisfied before any command other than EXIT.
2. Power down and Self refresh can be entered only from the both banks idle state.
3. Must be legal command as defined in Operative Command Table.

Remark Legend:
$\mathrm{H}=$ High level, $\mathrm{L}=$ Low level, $\times=$ High or Low level (Don't care)

4.6 Command Truth Table for Two Banks Operation

CS	RAS	CAS	WE	DSF	A9 (BA)	A8	A7-A0	Action	"FROM" State ${ }^{\text {Note } 1}$	"TO" State ${ }^{\text {Note } 2}$
H	\times	NOP	Any	Any						
L	H	H	H	L	\times	\times	\times	NOP	Any	Any
L	H	H	L	L	\times	\times	\times	BST	(R/W/A)0(I/A)1	A0(I/A) 1
									10(I/A)1	10(I/A)1
									(R/W/A)1(I/A)0	A1(I/A)0
									I1(I/A)0	11(I/A) 0
L	H	L	H	L	H	H	CA	Read	(R/W/A)1(I/A)0	RP1(I/A)0
					H	H	CA		A1(R/W) 0	RP1A0
					H	L	CA		(R/W/A)1(I/A)0	R1(I/A)0
					H	L	CA		A1(R/W) 0	R1A0
					L	H	CA		(R/W/A)0(I/A)1	RP0(I/A)1
					L	H	CA		A0(R/W) 1	RPOA1
					L	L	CA		(R/W/A)0(I/A)1	RO(I/A)1
					L	L	CA		A0(R/W) 1	ROA1
L	H	L	L	L/H	H	H	CA	Write/Block Write	(R/W/A)1(I/A)0	WP1(I/A) 0
					H	H	CA		A1(R/W) 0	WP1A0
					H	L	CA		(R/W/A)1(I/A)0	W1(I/A)0
					H	L	CA		A1(R/W) 0	W1A0
					L	H	CA		(R/W/A)0(I/A)1	WPO(I/A)1
					L	H	CA		A0(R/W)1	WPOA1
					L	L	CA		(R/W/A)0(I/A)1	W0(I/A)1
					L	L	CA		A0(R/W) 1	WOA1
L	L	H	H	L/H	H	RA		Activate Row	IIAny0	AlAny0
					L	RA			IOAny1	A0Any1
L	L	H	L	L	\times	H	\times	Precharge	(R/W/A/I)0(I/A)1	1011
					\times	H	\times		(R/W/A/I)1(I/A)0	1110
					H	L	\times		(R/W/A/I)1(I/A)0	I1(I/A)0
					H	L	\times		(I/A)1(R/W/A/I)0	I1(R/W/A/I) 0
					L	L	\times		(R/W/A/I)0(I/A)1	10(1/A)1
					L	L	\times		(I/A)0(R/W/A/I)1	IO(R/W/A/I)1
L	L	L	H	L	\times	\times	\times	Refresh	1011	1011
L	L	L	L	L	Op-Cod			Mode Register Access	1011	1011
L	L	L	L	H	Op-Cod			Special Register Access	(I/A)0(I/A)1	(I/A)0(I/A)1

Notes 1. If the μ PD481850 is in a state other than above listed in the "From State" column, the command is illegal.
2. The states listed under "To" might not be entered on the next clock cycle. Timing restrictions apply.

Remark Legend:

$H=$ High level, $L=$ Low level, $\times=$ High or Low level (Don't care),
BA = Bank address (A9), I = Idle, A = Bank active,
$R=$ Read with No precharge (No precharge is posted)
$\mathrm{W}=$ Write with No precharge (No precharge is posted)
$R P=$ Read with auto precharge (No precharge is posted)
WP $=$ Write with auto precharge (No precharge is posted)
Any = Any State
XOY1 = Bank0 is in state " X ", Bank1 = in state " Y "
$(X / Y) 0 Z 1=Z 1(X / Y) 0=B a n k 0$ is in state " X " or " Y ", Bank1 is in state " Z "

5. Initialization

The synchronous GRAM is initialized in the power-on sequence according to the following.
(1) To stabilize internal circuits, when power is applied, a 100- μ s or longer pause must precede any signal toggling.
(2) After the pause, both banks must be precharged using the Precharge command (The Precharge all banks command is convenient).
(3) Once the precharge is completed and the minimum tRP is satisfied, the mode register can be programmed.
After the mode register set cycle, trsc (20 ns minimum) pause must be satisfied as well.
(4) Two or more CBR (Auto) refresh must be performed.

Remarks 1. The sequence of Mode register programming and Refresh above may be transposed.
2. CKE and DQM may be held high until the Precharge command is asserted to ensure databus Hi-Z.

6. Programming the Mode Register

The mode register is programmed by the Mode register set command using address bits A9 through A0 as data inputs. The register retains data until it is reprogrammed or the device loses power.

The mode register has four fields;

Options : A9 through A7
CAS latency: A6 through A4
Wrap type : A3
Burst length: A2 through A0

Following mode register programming, no command can be asserted before at least 20 ns (trsc) have elapsed.

CAS Latency

CAS Iatency is the most critical of the parameters being set. It tells the device how many clocks must elapse before the data will be available.

The value is determined by the frequency of the clock and the speed grade of the device. The table on page 52 shows the relationship of CAS latency to the clock period and the speed grade of the device.

Burst Length

Burst Length is the number of words that will be output or input in a read or write cycle. After a read burst is completed, the output bus will become $\mathrm{Hi}-\mathrm{Z}$.

The burst length is programmable as 1, 2, 4, 8 or full page (256 columns).

Wrap Type (Burst Sequence)

The wrap type specifies the order in which the burst data will be addressed. This order is programmable as either "Sequential" or "Interleave". The method chosen will depend on the type of CPU in the system.

Some microprocessor cache system are optimized for sequential addressing and others for interleaved addressing. The table on the page 27 shows the addressing sequence for each burst length using them. Sequential mode supports bursts of $1,2,4$ and 8 , Interleave mode supports bursts of 4 and 8 . Additionally, sequential sequence supports the full page length.

7. Mode Register

Latenc\| mode	Bits6-4	$\overline{\mathrm{CAS}}$ latency
	000	R
	001	1
	010	2
	011	3
	100	R
	101	R
	110	R
	111	R

Remark R: Reserved

Mode Register Write Timing

7.1 Burst Length and Sequence

[Burst of Two]

Starting Address (column address A0, binary)	Sequential Addressing Sequence (decimal)	Interleave Addressing Sequence (decimal)
0	0,1	Not support
1	1,0	Not support

[Burst of Four]

Starting Address (column address A1-A0, binary)	Sequential Addressing Sequence (decimal)	Interleave Addressing Sequence (decimal)
00	$0,1,2,3$	$0,1,2,3$
01	$1,2,3,0$	$1,0,3,2$
10	$2,3,0,1$	$2,3,0,1$
11	$3,0,1,2$	$3,2,1,0$

[Burst of Eight]

Starting Address (column address A2 - A0, binary)	Sequential Addressing Sequence (decimal)	Interleave Addressing Sequence (decimal)
000	$0,1,2,3,4,5,6,7$	$0,1,2,3,4,5,6,7$
001	$1,2,3,4,5,6,7,0$	$1,0,3,2,5,4,7,6$
010	$2,3,4,5,6,7,0,1$	$2,3,0,1,6,7,4,5$
011	$3,4,5,6,7,0,1,2$	$3,2,1,0,7,6,5,4$
100	$4,5,6,7,0,1,2,3$	$4,5,6,7,0,1,2,3$
101	$5,6,7,0,1,2,3,4$	$5,4,7,6,1,0,3,2$
110	$6,7,0,1,2,3,4,5$	$6,7,4,5,2,3,0,1$
111	$7,0,1,2,3,4,5,6$	$7,6,5,4,3,2,1,0$

Full page burst is an extension of the above tables of Sequential Addressing, with the length being 256.

8. Programming the Special Register

The special register is programming by the Special register set command using address bits A9 through A0 and data bits DQ0 through DQ31. The color and mask register retain data until it is reprogrammed or the device losed power.

The special register has four fields.

Reserved : A9 through A7
Color register: A6
Mask register : A5
Reserved : A4 through A0

Following special register programming, no command can be asserted before at least 20 ns (trsc) have elapsed.

Color Register

Color register is used as write data in Block Write cycle. In Special Register set command, if A5 is "0" and A6 is " 1 ", the color register is selected. And the data of DQ0 through DQ31 is stored to color register as color data (write data).

Mask Register

Mask register is used as write mask data in Write and Block Write cycle. In Special Register set command, if A5 is " 1 " and A6 is " 0 ", the mask register is selected. And the data of DQ0 through DQ31 is stored to mask register as write mask data.

Special Register

Remark If LC and LM are both high (1), data of Mask and Color register will be unknown.
9. Address Bits of Bank-Select and Precharge

Row	A0	A1	A2	A3	A4	A5	A6	A7	A8	A9	0	Select Bank A "Activate" command
(Activate command)											1	Select Bank B "Activate" command

A0	A1	A2	A3	A4	A5	A6	A7	A8	A9

(Precharge command)

\rightarrow| A8 | A9 | Result |
| :---: | :---: | :--- |
| 0 | 0 | Precharge Bank A |
| 0 | 1 | Precharge Bank B |
| 1 | \times | Precharge All Banks |
| $\times:$ Don't care | | |

Col.

(CAS strobes)

Precharge for Bank A

10. Precharge

The precharge command can be asserted anytime after tras(MiN.) is satisfied.
Soon after the precharge command is asserted, precharge operation performed and the synchronous GRAM enters the idle state after $t_{R P}$ is satisfied. The parameter $t_{R P}$ is the time required to perform the precharge.

The earliest timing in a read cycle that a precharge command can be asserted without losing any data in the burst is as follows.

It is depending on the CAS latency.

CAS latency $=1 \quad$: At the same clock as the last read data.
CAS latency $=2$ or 3 : One clock earlier than the last read data.

In order to write all data to the memory cell correctly, the asynchronous parameter "tDpL" must be satisfied. The tDPL(MIN.) specification defines the earliest time that a precharge command can be asserted. Minimum number of clocks are calculated by dividing tDPL (MIN.) with clock cycle time.

In summary, the precharge command can be asserted relative to reference clock that indicates the last data word is valid. In the following table, minus means clocks before the reference; plus means time after the reference.

CAS latency	Read	Write
1	0	+topL (MIN.)
2	-1	+tDPL (MIN.)
3	-1	+topL (MIN.)

11. Auto Precharge

During a read or write/block write command cycle, A8 controls whether auto precharge is selected. A8 high in the read or write/block write command (Read with Auto precharge command or Write with Auto precharge command/Block Write with Auto precharge command), auto precharge is selected and begins after the burst access automatically.

When the tras is not satisfied, the precharge does not start at above timing. And the precharge will start when the tras is satisfied.

The clock that begins the auto precharge cycle is depend on both the CAS latency programmed into the mode register and whether READ or WRITE/BLOCK WRITE cycle.

11.1 Read with Auto Precharge

When using auto precharge in READ cycle, knowing when the precharge starts is important because the next activate command to the bank being precharged cannot be executed until the precharge cycle ends. Once auto precharge has started, an activate command to the bank can be asserted after trp has been satisfied.

During READ cycle, the auto precharge begins after tras and begins on the clock that indicates the last data word output during the burst is valid (CAS latency of 1) or one clock earlier (CAS latency of 2 or 3).

(tras is satisfied)
Remark READA means Read with Auto precharge

11.2 Write with Auto Precharge

In write cycle, the tdal must be satisfied to assert the all commands to the bank being precharged. And it is not necessary to know when the precharge starts. In block write cycle, the tbal must be satisfied to assert the all commands to the bank being precharged. And it is not necessary to know the precharge starts.

During WRITE cycle, the auto precharge begins after $t_{\text {RAS }}$ and begins one clock after the last data word input to the device (CAS latency of 1 or 2) or two clocks after (CAS latency of 3).

(tras is satisfied)

Remark WRITA means Write with Auto precharge

11.3 Block Write with Auto Precharge

During BLOCK WRITE cycle, the auto precharge begins one clock after the block write command to the device (CAS latency of 1) or two clocks after (CAS latency of 2) or three clocks after (CAS latency of 3).

In summary, the auto precharge cycle begins relative to a reference clock that indicates the last data word is valid.

In the table below, minus means clocks before the reference; plus means clocks after the reference.

CAS latency	Read	Write	Block Write
1	0	+1	+2
2	-1	+1	+2
3	-1	+2	+3

12. Write/Block Write with Write Per Bit

To use WPB operation
(1) Execute Special register set command and set WPB data (32 bits) to mask register.
(2) Execute BankActivate with WPB enable command (ACTWPB) after trsc (20 ns) period from Special register set command (SRS).
(3) Execute Write/Block write command after trco period from ACTWPB.

In case SRS command is executed in activate state to set new WPB data, it is necessary to take trsc (20 ns) interval between SRS and Write/Block write command.

Remark Mask data $=$ Mask register's data (WPB) + DQMi DQMi is prior to Mask register's data (WPB)

13. Block Write

In block write cycle, write data from color register can be written in 8 columns at one write cycle.
It is also possible to execute Block write cycle with write per bit. Column Mask by DQi is available.
To use Block write operation
(1) Execute Special register set command and set color data (32 bits) to color register.
(2) Execute Bank Activate (ACT) or Bank Activate with WPB enable command (ACTWPB) after trsc (20 ns) period from SRS.
(3) Execute Block write command after trco period from ACT or ACTWPB.

In case new Write/Block write is executed or, it is necessary to take tbwc interval from Block Write command to new Write/Block write command.

Block Write Function

Remarks 1. i is times of 8 numeric.
2. This diagram shows only for DQ0-7. The other $D Q$ is similar as this.

Column Mask

DQ0-7 : Column Mask for DQ0-7
DQ8-15 : Column Mask for DQ8-15
DQ16-23: Column Mask for DQ16-23
DQ24-31: Column Mask for DQ24-31

Write per Bit

Mask data $=$ Mask Register + DQMi
DQMi is prior to data of Mask Register.

14. Read/Write Command Interval

14.1 Read to Read Command Interval

During READ cycle, when new Read command is asserted, it will be effective after CAS latency, even if the previous READ operation does not completed. READ will be interrupted by another READ.

The interval between the commands is minimum 1 cycle. Each Read command can be asserted in every clock without any restriction.

14.2 Write to Write Command Interval

During WRITE cycle, when new Write command is asserted, the previous burst will terminate and the new burst will begin with a new Write commnad. WRITE will be interrupted by another WRITE.

The interval between the commands is minimum 1 cycle. Each Write command can be asserted in every clock without any restriction.

14.3 Write to Read Command Interval

Write command and Read command interval is also 1 cycle.
Only the write data before Read command will be written.
The data bus must be $\mathrm{Hi}-\mathrm{Z}$ at least one cycle prior to the first Dout.

14.4 Block Write to Write or Write/ Block Write Command Interval

The interval between BLOCK WRITE and new BLOCK WRITE or WRITE is tbwc or minimum 1 cycle. If tck is less than tbwc, NOP command should be issued for the cycle between BLOCK WRITE and the following WRITE or new BLOCK WRITE.

14.5 Block Write to Read Command Interval

BLOCK WRITE command and READ command is also tswc or minimum 1 cycle. The data bus must be $\mathrm{Hi}-\mathrm{Z}$ at least one cycle prior to the first Dout.

14.6 Read to Write/ Block Write Command Interval

During READ cycle, Read can be interrupted by WRITE. But full page burst read can not be interrupted by WRITE. Full page burst read can be interrupted by Burst Stop command (BST) or Precharge command (Burst termination).

For CAS latency of 1 or 2 , the READ and WRITE command interval is minimum 1 cycle. The data bus must be Hi-Z using DQM before WRITE to avoid data conflict. And DQM must be kept being High from at least 3 clocks to 1 clock before the Write command.

For CAS latency of 3, the READ and WRITE command interval is [Burst length +1] cycles. The data bus must be Hi-Z using DQM before WRITE to avoid data conflict. And DQM must be kept being High from at least 3 clocks to 1 clock before the WRITE command.

15. Burst Temmination

Burst termination is to terminate a burst operation other than using a read or write command.

15.1 Burst Stop Command in Full Page

Burst Stop command is operated only in case full page burst mode. During the other burst mode, Burst Stop command is NOP.

During full page burst read cycle, when the burst stop command is asserted, the burst read data are terminated and the data bus goes to high-impedance after the CAS latency from the burst stop command.

Remark BST: Burst stop command

During full page burst write cycle, when the burst stop command is asserted, the burst read data are terminated and data bus goes to high-impedance at the same clock with the burst stop command.

Remark BST: Burst stop command

15.2 Precharge Termination

15.2.1 Precharge Termination in READ Cycle

During READ cycle, the burst read operation is terminated by a precharge command.
When the precharge command is asserted, the burst read operation is terminated and precharge starts. The same bank can be activated again after trp from the precharge command.
The DQM must be high to mask the invalid data.

When CAS latency is 1 , the read data will remain valid until the precharge command is asserted. Invalid data may appear one clock after valid data out.
The DQM may be high to mask the invalid data.

When CAS latency is 2, the read data will remain valid until one clock after the precharge command. Invalid data may appear one clock after valid data out.

The DQM may be high to mask the invalid data.

When CAS latency is 3 , the read data will remain valid until one clock after the precharge command. Invalid data may appear one and two clocks after valid data out.

The DQM may be high to mask the invalid data.

15.2.2 Precharge Termination in WRITE Cycle

During WRITE cycle, the burst write operation is terminated by a precharge command.
When the precharge command is asserted, the burst write operation is terminated and precharge starts.
The same bank can be activated again after trp from the precharge command.
The DQM must be high to mask invalid data in.
When CAS latency is 1 or 2 , the write data written prior to the precharge command will be correctly stored. However, invalid data may be written at the same clock as the precharge command. To prevent this from happening, DQM must be high at the same clock as the precharge command. This will mask the invalid data.

When CAS latency is 3 , the write data written more than one clock prior to the precharge command will be correctly stored.

However, invalid data may be written at one clock before and the same clock as the precharge command.
To prevent this from happening, DQM must be high from one clock prior to the precharge command until the precharge command. This will mask the invalid data.

16. Electrical Specifications (Preliminary)

- All voltage are referenced to Vss (GND).
- After power up, waitmore than 100μ s and then, execute Power on sequence and Auto Refresh before proper device operation is achieved.

Absolute Maximum Ratings

Parameter	Symbol	Condition	Rating
Voltage on power supply pin relative to GND	V_{T}		-1.0 to +4.6
Voltage on input pin relative to GND	$\mathrm{Vcc} VccQ$,		-1.0 to +4.6
Short circuit output current	lo		50
Power dissipation	PD_{D}		V
Operating ambient temperature	TA_{A}		V
Storage temperature	Tstg		0 to 70

Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in theoperational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Supply voltage	$\mathrm{V}_{\text {cc }}$		3.0	3.3	3.6	V
High level input voltage	$\mathrm{V}_{\mathbf{I H}}$		2.0		$\mathrm{~V}_{\mathrm{cc}}+0.3$	V
Low level input voltage	V_{IL}		-0.3		+0.8	V
Operating ambient temperature	$\mathrm{T}_{\text {A }}$		0		70	${ }^{\circ} \mathrm{C}$

Capacitance ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{f}=\mathbf{1 M H z}$)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Input capacitance	Cl_{11}	A0 to A9	2		4	pF
	Cl_{12}	CLK, CKE, CS, RAS, CAS, WE, DSF, DQM	2		4	pF
Data input/output capacitance	C_{10}	DQ0 to DQ31	2		5	pF

DC Characteristics 1 (Recommended Operating Conditions unless otherwise noted)

Parameter	Symbol	Test condition		Grade	MAX.	Unit	Notes
Operating current	Icc1			-10	105	mA	1
				-12	90		
				-15	85		
Precharge standby current in Power down mode	Icc2P	CKE $\leq \mathrm{V}_{\text {IL (}}^{\text {(maX. }}$) $\mathrm{tck}^{\text {c }}=15 \mathrm{~ns}$			7	mA	
	Icc2PS				6		
Precharge standby current in Non power down mode		$\begin{aligned} & C K E \geq \mathrm{V}_{\mathrm{H} \text { (мIN.) }} \mathrm{tck}=15 \mathrm{~ns} \\ & C S \geq \mathrm{V}_{\mathrm{H}} \text { (MIN.) } \end{aligned}$ Input signals are changed one time during 30ns.			36	mA	
	Icc2NS	CKE $\geq \mathrm{V}_{\text {IH (MIN.) }}$ tck $=\infty$ Input signals are stable.			22		
Active standby current in Power down mode	Icc3P	CKE $\leq \mathrm{VIL}_{\text {(MAX.) }} \mathrm{tck}^{\text {c }}=15 \mathrm{~ns}$			7	mA	
	Icc3PS				6		
Active standby current in Non power down mode	$\mathrm{Icc3} \mathrm{~N}$	$\begin{aligned} & \text { CKE } \geq \mathrm{V}_{\text {IH (MiN.) }} \mathrm{tck}=15 \mathrm{~ns} \\ & \mathrm{CS} \geq \mathrm{V}_{\mathrm{IH} \text { (MiN.) }} \end{aligned}$ Input signals are changed one time during 30 ns .			36	mA	
	Icc3NS	CKE $\geq \mathrm{V}_{\text {IH (Min.) }}$ tck $=\infty$ Input signals are stable.			22		
Operating current (Burst mode)	Icc4	$\begin{aligned} & \mathrm{tck} \geq \operatorname{tck}(\mathrm{min} .) \\ & \mathrm{lo}=0 \mathrm{~mA} \end{aligned}$	CAS Iatency $=1$	-10	210	mA	2
				-12	180		
				-15	165		
			CAS latency $=2$	-10	280		
				-12	235		
				-15	220		
			CAS Iatency $=3$	-10	365		
				-12	310		
				-15	285		
Refresh current	Iccs	$\operatorname{trc}^{\text {a }}$ trc (min.)		-10	85	mA	3
				-12	80		
				-15	75		
Self refresh Current	Icc6	$\mathrm{CKE} \leq 0.2 \mathrm{~V}$			6	mA	
Operating Current (Block Write Mode)	Icc7	$\operatorname{tck} \geq \mathrm{tck}$ (Min.), lo $=0 \mathrm{~mA}$, CAS cycle $=20 \mathrm{~ns}$			250	mA	

Notes 1. Iccı depends on output loading and cycle rates. Specified values are obtained with the output open. In addition to this, Icci is measured on condition that addresses are changed only one time during tck(min.).
2. Icc4 depends on output loading and cycle rates. Specified values are obtained with the output open. In addition to this, Icc4 is measured on condition that addresses are changed only one time during tck(min.).
3. Iccs is measured on condition that addresses are changed only one time during tck(min.).

DC Characteristics 2 (Recommended Operating Conditions unless otherwise noted)

Parameter	Symbol	Test condition	MIN.	TYP.	MAX.	Unit
Input leakage current	$11(L)$	$\mathrm{V}_{1}=0$ to 3.6 V , all other pins not under test $=0 \mathrm{~V}$	-1.0		+1.0	$\mu \mathrm{A}$
Output leakage current	lo (L)	Dout is disabled, $\mathrm{V}_{0}=0$ to 3.6 V	-1.0		+1.0	$\mu \mathrm{A}$
High level output voltage	Vон	$\mathrm{lo}=-2 \mathrm{~mA}$	2.4			V
Low level output voltage	VoL	$\mathrm{l}=+2 \mathrm{~mA}$			0.4	V

AC Characteristics (Recommended Operating Conditions unless otherwise noted)

Test Conditions

- AC measurements assume tt=lns.
- Reference level for measuring timing of input signals is 1.4 V . Transition times are measured between Vif and VIL.
- If tt is longer than 1 ns , reference level for measuring timing of input signals is V_{IH} (min.) and V_{IL} (max.).
- An access time is measured at 1.4 V .

Synchronous Characteristics
(1/2)

Parameter		Symbol	-10		-12		-15		Unit	Note	
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.				
Clock cycle time	CAS latency=3		tck3	10	(100M Hz)	12	(83MHz)	15	(66MHz)	ns	
	CAS latency=2	tck2	15	(66MHz)	18	(55MHz)	19.5	(50 MHz)	ns		
	CAS latency=1	tckı	30	(33MHz)	36	(28MHz)	39	(25 MHz)	ns		
Access time from CLK	CAS latency=3	tacz		9		11		14	ns	1	
	CAS latency=2	tacz		12		15		16.5	ns	1	
	CAS latency=1	tacl		27		33		36	ns	1	
CLK high level width		tch	3.5		4		5		ns		
CLK low level width		tcl	3.5		4		5		ns		
Data-out hold time		toн	4		4		4		ns		
Data-out low-impedance time		t.z	0		0		0		ns		
Data-out high-impedance time	CAS latency $=3$	thzz	4	8	4	8	4	10	ns		
	CAS latency $=2$	thzz	4	11	4	11	4	11	ns		
	CAS latency $=1$	thzı	4	27	4	27	4	27	ns		
Data-in setup time		tos	3		3.5		3.5		ns		
Data-in hold time		tD H	1		1.5		1.5		ns		
Address setup time		$\mathrm{tas}^{\text {S }}$	3		3.5		3.5		ns		
Address hold time		$\mathrm{taH}_{\text {A }}$	1		1.5		1.5		ns		
CKE setup time		tcks	3		3.5		3.5		ns		
CKE hold time		tckn	1		1.5		1.5		ns		
CKE setup time (Power down exit)		tcksp	3		3.5		3.5		ns		

Note 1. Loading capacitance is 30 pF .

Parameter	Symbol	-10		-12		-15		Unit	Note
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Command (CS, RAS, CAS, WE, DSF, DQM) setup time	tcms	3		3.5		3.5		ns	
Command (CS, RAS, CAS, WE, DSF, DQM) hold time	tcm	1		1.5		1.5		ns	

Asynchronous Characteristics

Parameter		Symbol	-10		-12		-15		Unit	Note	
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.				
REF to REF/ACT Command period			trc	100		120		130		ns	
ACT to PRE Command period		$t_{\text {RAS }}$	70	120,000	84	120,000	90	120,000	ns		
PRE to ACT Command period		trp	30		36		39		ns		
Delay time ACT to READ/WRITE Command		trco	30		36		39		ns		
$\mathrm{ACT}(0)$ to $\mathrm{ACT}(1)$ Command period		trrd	30		36		39		ns		
Data-in to PRE Command period	CAS latency=3	topl3	1CLK +10		1CLK +12		1CLK +15		ns		
	CAS latency $=2$	topl2	15		18		19.5		ns		
	CAS latency=1	topL1	15		18		19.5		ns		
Data-in to ACT (REF) Command period (Auto precharge)	CAS latency=3	toal 3	2CLK +30		2CLK +36		2CLK +45		ns		
	CAS latency=2	toalz	1CLK +30		1CLK +36		1CLK+39		ns		
	CAS latency=1	toalı	1CLK +30		1CLK +36		1CLK+39		ns		
Block write cycle time		tswc	20		24		30		ns		
Block write data-in to PRE Command period	CAS latency $=3$	tbpL3	1CLK +20		1CLK +24		1CLK +30		ns		
	CAS latency=2	tbpl2	30		36		39		ns		
	CAS latency $=1$	tbpL1	30		36		36		ns		
Block write data-in Active (REF) Command Period (Auto Precharge)	CAS latency=3	tbalz	2CLK +40		2CLK +48		2CLK+60		ns		
	CAS latency=2	tbal2	1CLK +40		1CLK +48		1CLK +52		ns		
	CAS latency=1	tbali	1CLK +40		1CLK+48		1CLK +52		ns		
Mode register set cycle time		trsc	20		20		20		ns		
Transition time		tT	1	30	1	30	1	30	ns		
Refresh time		treF		16		16		16	ms		

16.1 AC Parameters for Read/ Write Cycles
\qquad

16.2 Relationship between Frequency and Latency

Speed version	-10			-12			-15		
Clock cycle time [ns]	10	15	30	12	18	36	15	19.5	39
Frequency [M Hz]	100	66	33	83	55	28	66	50	25
CAS latency	3	2	1	3	2	1	3	2	1
[trcd]	3	2	1	3	2	1	3	2	1
RAS latency (CAS latency + [trcd])	6	4	2	6	4	2	6	4	2
[trc]	10	7	4	10	7	4	10	7	4
[tras]	7	5	3	7	5	3	7	5	3
[trRD]	3	2	1	3	2	1	3	2	1
[trp]	3	2	1	3	2	1	3	2	1
[topl]	2	1	1	2	1	1	2	1	1
[taal]	5	3	2	5	3	2	5	3	2

16.3 CS Function

16.4 Basic Cycles

16.4.2 Mode Register Set

16.4.3 Refresh Cycle

びひ 岂

16.4.5 Full Page Mode Cycle

16.4.6 Precharge Termination Cycle

16.4.7 Clock Suspension

$\stackrel{v}{U}$
$\overline{\overline{C S}}$ RAS
CAS
$\overline{\mathrm{WE}}$
DSF

\&
16.4.8 Power Down Mode

16.5
Random Row Write with WPB (Pingpong banks) (1/3) (Burst length = 8, CAS latency = 1)

Random Row Write with WPB (Pingpong banks) (3/3) (Burst length = 8, CAS latency = 3)

シ 岂 岂
Block Write (page at same bank) changing color and mask data (CAS latency =3)

16.6 Application Cycles
16.6.1 Page Cycles with Same Bank

ジ

16.6.2 Cycles with Pingpong Banks

Random Row Read (Pingpong banks) (3/3) (Burst length $=8$, CAS latency $=3$)

16.6.3 READ and WRITE Cycles

16.6.4 Interleaved Cycles

光 岂

16.6.5 Full Page Random Cycles

17. Package Drawing

100PIN PLASTIC QFP (14×20)

NOTE
Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	23.2 ± 0.2	$0.913_{-0.008}^{+0.009}$
B	20.0 ± 0.2	$0.787_{-0.009}^{+0.009}$
C	14.0 ± 0.2	$0.551_{-0.008}^{+0.009}$
D	17.2 ± 0.2	0.677 ± 0.008
F	0.825	0.032
G	0.575	0.023
H	$0.32_{-0.07}^{+0.08}$	0.013 ± 0.003
I	0.13	0.005
J	$0.65($ T.P. $)$	$0.026($ T.P. $)$
K	1.6 ± 0.2	0.063 ± 0.008
L	0.8 ± 0.2	$0.031_{-0.008}^{+0.009}$
M	$0.17_{-0.05}^{+0.06}$	0.007 ± 0.002
N	0.10	0.004
P	2.7	0.106
Q	0.125 ± 0.075	0.005 ± 0.003
R	$3^{\circ+7^{\circ}}$	$3^{\circ}{ }_{-3^{\circ}} 7^{\circ}$
S	3.0 MAX.	0.119 MAX.
		S100GF-65-JBT

18. Recommended Soldering Conditions

Please consult with our sales offices for soldering conditions of the μ PD481850.
Type of Surface Mount Device
μ PD481850GF-J BT: $\mathbf{1 0 0}$-pin Plastic QFP ($\mathbf{1 4} \times \mathbf{2 0} \mathbf{~ m m}$)

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an intemal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must befixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to Vod or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications goveming the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is tumed ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

[MEMO]

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductordevices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices in "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact NEC Sales Representative in advance.
Anti-radioactive design is not implemented in this product.

